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Complex bioconvection patterns are observed when a suspension of the oxytactic
bacterium Bacillus subtilis is placed in a chamber with its upper surface open to
the atmosphere. The patterns form because the bacteria are denser than water and
swim upwards (up an oxygen gradient) on average. This results in an unstable density
distribution and an overturning instability. The pattern formation is dependent on
depth and experiments in a tilted chamber have shown that as the depth increases
the first patterns formed are hexagons in which the fluid flows down in the centre.

The linear stability of this system was analysed by Hillesdon & Pedley (1996) who
found that the system is unstable if the Rayleigh number Γ exceeds a critical value,
which depends on the wavenumber k of the disturbance as well as on the values of
other parameters. Hillesdon & Pedley found that the critical wavenumber kc could be
either zero or non-zero, depending on the parameter values.

In this paper we carry out a weakly nonlinear analysis to determine the relative
stability of hexagon and roll patterns formed at the onset of bioconvection. The
analysis is different in the two cases kc 6= 0 and kc = 0. For the kc 6= 0 case (which
appears to be more relevant experimentally) the model does predict down hexagons,
but only for a certain range of parameter values. Hence the analysis allows us to refine
previous parameter estimates. For the kc = 0 case we carry out a two-dimensional
analysis and derive an equation describing the evolution of the horizontal planform
function.

1. Introduction
The spontaneous formation of bioconvection patterns has been observed in suspen-

sions of swimming microorganisms such as the alga Chlamydomonas nivalis and the
bacterium Bacillus subtilis (Wager 1911; Platt 1961; Pedley & Kessler 1992; Kessler
et al. 1994, 1995). Much of the previous work on bioconvection has concentrated on
algae; in this paper we consider bioconvection in a suspension of swimming bacteria
in which the upswimming is due to aerotaxis (swimming up oxygen gradients).

B. subtilis is a harmless soil bacterium which swims by rotating its flagellar bundle.
It consumes oxygen and on average swims up oxygen gradients. In common with
other chemotactic bacteria such as Escherichia coli, B. subtilis does not swim in a
uniform straight line up the chemoattractant gradient but rather the cell swimming
direction is random, with merely a mean ‘drift’ in the preferred direction (Berg
& Brown 1972; Alt 1994; Kessler et al. 1995). In the model to be described this
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Figure 1. Bioconvection pattern in a suspension of B. subtilis in a tilted chamber. There are no
patterns in the shallow region at the bottom of the photograph. As the depth increases a pattern
of hexagons is seen which gives way to more complex patterns as the depth increases further. The
walls and meniscus affect the patterns at the edges of the petri dish. Light areas represent regions of
high bacterial concentration in which the fluid is descending. Photograph courtesy of J. O. Kessler.

swimming is represented as an isotropic cell diffusion with a superimposed average
swimming velocity proportional to the concentration gradient of the chemoattractant
(Keller & Segel 1971a, b).

The experiment of Kessler et al. (1994) consists of an initially well-stirred suspension
of B. subtilis with uniform concentrations of both oxygen and bacteria. The bacteria
consume oxygen throughout the suspension but oxygen is only replenished at the
free surface, causing an oxygen gradient to be set up. The bacteria then swim up
this oxygen gradient leading to an unstable density distribution which results in an
overturning instability and the formation of patterns. The instability is analogous to
Rayleigh–Bénard convection, hence the term bioconvection.

Figure 1 shows the bioconvection patterns set up in a tilted petri dish in which the
depth of the suspension varies. In the very shallow regions (near the bottom of the
photograph) no patterns are formed. As the depth increases above a critical value a
band of hexagons is seen which gives way to more complicated roll-type patterns as
the depth increases further. The weakly nonlinear analysis described in this paper can
be used to predict the patterns when the suspension is just deep enough for patterns
to be formed. In figure 1 the light areas represent regions with a high concentration
of bacteria in which the fluid is falling. Hence the hexagons formed when the depth
is slightly supercritical are ‘down’ hexagons in which fluid flows down in the centre
and up at the edges.
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Previous work on the problem of bacterial bioconvection has involved setting up
the model equations, tracing the evolution towards a steady-state (Hillesdon, Pedley
& Kessler 1995) and investigating the linear stability of such steady-state solutions
(Hillesdon & Pedley 1996). Here we summarize some of the previous results (§§ 2 and
3) before describing a weakly nonlinear analysis of the problem for suspensions that
are not so deep that the oxygen concentration falls effectively to zero near the bottom.
There are two distinct cases to be considered, one in which the critical wavenumber
from linear theory is non-zero (§§ 4 and 5) and one in which it is zero (§ 6).

In the non-zero critical wavenumber case the weakly nonlinear analysis allows us
to draw a bifurcation diagram describing the behaviour of the system. For certain
values of the parameters the model predicts the formation of down hexagons with
a wavelength close to that observed in experiment. In the zero critical wavenumber
case we consider two-dimensional patterns and use a long-wavelength approximation
to derive an equation describing the evolution of the horizontal planform.

2. The model
The problem is described by an equation for cell concentration (N) and an equation

for oxygen concentration (C), together with the Navier–Stokes equations and the
continuity equation. The equation for cell conservation is

∂N

∂T
= −∇ · (NU +NV − DN · ∇N) , (2.1)

in which the cell flux vector contains a term for advection of cells with the bulk fluid
velocity U and two terms describing cell swimming. The diffusive term (DN · ∇N)
describes the random aspects of cell swimming and V is the superimposed average
swimming velocity. The equation for oxygen conservation is

∂C

∂T
= −∇ · (CU − DC∇C)−KN, (2.2)

where the oxygen flux vector contains terms for advection and diffusion of oxygen
(where DC is the oxygen diffusivity) and K is the rate of oxygen consumption by the
bacteria.

If the suspension is sufficiently dilute for hydrodynamic cell–cell interactions to be
negligible, the equations for the fluid velocity are the continuity equation and the
Navier–Stokes equations under the Boussinesq approximation:

∇ ·U = 0, (2.3)

ρw

(
∂U

∂T
+ (U · ∇)U

)
= −∇Pe + v(ρc − ρw)Ng+ µ∆U . (2.4)

Here ρw and ρc are the densities of water and cells respectively, µ is the viscosity
of the suspension, v is the volume of one cell, Pe(X , T ) is the excess pressure above
hydrostatic and g is the acceleration due to gravity.

The timescale over which patterns form, of the order of minutes, is very much
smaller than the timescale for bacterial reproduction, which is several hours; therefore
there is no term for bacterial reproduction or death in (2.1). We have also neglected
the contribution to DN from Brownian motion and to V from cell sedimentation
since both of these are small compared to the corresponding contributions from cell
swimming (Hillesdon et al. 1995). For simplicity we also ignore the effect of gyrotaxis
(the orientation of the cells by viscous forces in a shear flow) although this has been
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found to be important in bioconvection of algae such as C. nivalis (Kessler 1985;
Hill, Pedley & Kessler 1989; Pedley & Kessler 1990) and is probably important in the
bacterial case also.

The behaviour of the bacteria can be thought of as requiring a minimum con-
centration of oxygen, Cmin , in order to be active. This is taken into account by
non-dimensionalising the oxygen concentration as θ = (C − Cmin)/(C0 − Cmin), where
C0 is the initial and free-surface oxygen concentration. The cell diffusion is modelled
as an isotropic tensor DN = DN0H(θ)I , the directional cell swimming as proportional
to the gradient of θ, V = aVsH(θ)∇θ and the oxygen consumption as K = K0H(θ).
DN0 and aVs are taken to be given constants; a has dimensions of length so that Vs
has dimensions of velocity. The cut-off is modelled using the Heaviside step function
H(θ) since this gives us an analytic solution for the steady state in a shallow chamber.
Hillesdon et al. (1995) also considered modelling the cut-off in a slightly more realistic
manner using a function which saturates exponentially. In that case the steady-state
solution was found numerically. No qualitative difference was found for the results in
a shallow chamber, hence for simplicity we use the step function form of the cut-off.

The other variables are non-dimensionalized as

n =
N

N0

, z =
Z

h
, t =

DN0

h2
T , u =

h

DN0

U , pe =
h2

µDN0

Pe,

where h is the depth of the chamber and N0 is the initial cell concentration. The
vertical coordinate z is measured downwards so that z = 1 is the bottom of the
chamber and z = 0 is the free surface at the top. Unlike the experiment of figure 1,
the depth of the chamber in the model is uniform and we assume that the free surface
is planar. The non-dimensionalized equations are

∂n

∂t
= ∇ · [H(θ)∇n− un−H(θ)γn∇θ] , (2.5)

∂θ

∂t
= ∇ · (δ∇θ − uθ)−H(θ)δβn, (2.6)

Sc−1

[
∂u

∂t
+ (u · ∇)u

]
= −∇pe + Γnẑ + ∆u, (2.7)

∇ · u = 0, (2.8)

where the dimensionless parameters are

β =
K0N0h

2

DC(C0 − Cmin)
, γ =

aVs

DN0

, δ =
DC

DN0

,

Γ =
vαN0gh

3

νDN0

, Sc = ν/DN0, ν = µ/ρw,

where α = (ρc − ρw)/ρw . The parameter β, which represents the strength of oxygen
consumption relative to its diffusion, can also be regarded as a depth parameter; γ is
a measure of the relative strengths of directional and random swimming and δ is the
ratio of oxygen diffusivity to cell diffusivity. Γ is analogous to the Rayleigh number
in thermal convection and Sc is a Schmidt number.

A no-slip condition is imposed at the bottom of the chamber and a stress-free con-
dition at the free surface. The other boundary conditions are zero vertical component
of fluid velocity at the upper and lower boundaries, zero cell flux at all boundaries,
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zero oxygen flux at the bottom and C = C0 at the free surface. These boundary
conditions are thus:
at z = 0

u · ẑ = 0,
∂2

∂z2
(u · ẑ) = 0, θ = 1, H(θ)

∂n

∂z
− γnH(θ)

∂θ

∂z
= 0;

at z = 1

u · ẑ = 0, u× ẑ = 0,
∂θ

∂z
= 0,

∂n

∂z
= 0.

Integrating equation (2.5) over a volume, V , gives∫
V

n dx = const = 1 , (2.9)

which represents conservation of cells. The integral is from 0 to 1 with respect to z
and the horizontal domain is either such that n, θ and u are periodic over it, or is the
horizontal extent of the chamber.

3. Steady-state solution and linear stability theory
In the steady state diffusion of cells (random cell swimming) balances chemotaxis

(mean swimming up the oxygen gradient), while oxygen diffusion is balanced by
oxygen consumption. The steady-state distributions of bacteria (n0) and oxygen (θ0)
depend only on z. There are two distinct cases. In a ‘shallow’ chamber (see figure 2)
the oxygen concentration is greater than Cmin , i.e. θ > 0, throughout the suspension,
which means that all the cells are actively swimming and consuming oxygen. In the
‘deep’ chamber case the oxygen concentration below a certain depth falls to Cmin

(i.e. θ = 0) and the bacteria in this lower, oxygen-depleted region become inactive
and cease to swim or to consume oxygen (figure 3). For a deep chamber there is no
closed-form solution to the steady-state problem but for the shallow chamber such a
solution does exist:

θ0 = 1− 2

γ
ln

{
cos
(

1
2
A(1− z)

)
cos
(

1
2
A
) }

, (3.1)

n0 =
A2

2βγ
sec2

(
1
2
A(1− z)

)
, (3.2)

where

tan

(
A

2

)
=
βγ

A
.

θ0 is positive for all z < 1, and the chamber is, in this sense, shallow if

β 6
2

γ
φ arctanφ, (3.3)

where φ = (eγ − 1)1/2 (see Hillesdon et al. 1995). In this paper we consider only the
shallow case.

The linear stability of the steady state depends on the Rayleigh number Γ . If
Γ is less than some critical value Γn the steady state is stable whereas if Γ is
greater than Γn the steady state is unstable. Γn depends on the wavenumber k of the
disturbance. The wavenumber kc for which Γn has its minimum value Γc is the most
unstable wavenumber and as Γ increases the first bifurcation will be to disturbances
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Figure 2. The steady-state oxygen, θ0, and cell, n0, distributions for a shallow chamber
(β = 1, γ = 10, δ = 1).
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Figure 3. The steady-state oxygen, θ0, and cell, n0, distributions for a deep chamber
(β = 60, γ = 5, δ = 1).
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Figure 4. Regions of parameter space where the critical wavenumber kc is zero and non-zero.

of wavelength 2π/kc. Hillesdon & Pedley (1996) computed the values of kc and Γc,
which depend on δ and the combination βγ. In particular kc can be either zero or
non-zero: the regions of parameter space in which kc is zero or non-zero are shown
in figure 4.

The linear analysis predicts the wavelength of the patterns formed, but to predict
the type of pattern requires a weakly nonlinear analysis. The two cases kc = 0 and
kc 6= 0 must be treated separately. The calculation for kc 6= 0 will be presented first,
followed by the calculation for kc = 0.
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4. Weakly nonlinear analysis: kc 6= 0

The aim of the weakly nonlinear analysis is to predict the patterns formed when
the Rayleigh number Γ is near critical. Three types of pattern are commonly seen in
convection problems: rolls, squares and hexagons. There are two types of hexagon:
those in which flow is up in the centre and down at the edges (up hexagons) and
those in which flow is down in the centre and up at the edges (down hexagons). The
calculation can be simplified by considering either patterns which fit on a hexagonal
lattice (rolls and hexagons) or those which fit on a square lattice (rolls and squares). It
is not possible to compare the relative stability of hexagons and squares since they do
not fit on the same lattice. Since hexagons are observed experimentally we restict our
calculation to the hexagonal lattice. The method is similar to that used by Matthews
(1988), among others.

The symmetries of the system restrict the possible solutions. In an up–down
asymmetric problem such as this both roll and hexagon bifurcations from the steady
state are unstable near the bifurcation point (Buzano & Golubitsky 1983; Golubitsky,
Swift & Knobloch 1984). One or more of these patterns may be stabilized at finite
amplitude; commonly hexagons are stabilized at a lower value of the Rayleigh
number than rolls (see figure 5 below, which is similar to the diagrams of Buzano
& Golubitsky 1983; Golubitsky et al. 1984). A wider class of patterns may be stable
near the bifurcation point in up–down symmetric systems.

The variables are expanded in terms of a small parameter ε which measures the
departure of the Rayleigh number Γ from its critical value Γc. At each order in
ε a solvability condition is derived which gives rise to an equation describing the
evolution of the amplitude of the pattern.

The variables are expanded as

Γ = Γc + εΓ1, u = εu1 + ε2u2 + . . . , n = n0 + εn1 + ε2n2 + . . . ,
θ = θ0 + εθ1 + ε2θ2 + . . . , p = pe + εp1 + ε2p2 + . . . .

}
(4.1)

The evolution of the system over a slow timescale τ is studied, where τ = εt. The
expanded variables (4.1) are substituted into equations (2.5)–(2.8) and terms of the
same order in ε equated.

At O(1) we obtain the equations for the steady state n0(z) and θ0(z).
At O(ε) the problem is the linear one solved by Hillesdon & Pedley (1996), in which

the variables n1, θ1 and the vertical velocity w1 are expressed as

n1 = N(z) f(x, y), θ1 = C(z) f(x, y), w1 = W (z) f(x, y).

On a hexagonal lattice the horizontal planform function f(x, y) is

f(x, y) = Re
(
A1(τ)e

iky + A2(τ)e
− 1

2

√
3ikx− 1

2 iky + A3(τ)e
1
2

√
3ikx− 1

2 iky
)

; (4.2)

for rolls we can take A1 = A and A2 = A3 = 0 and for hexagons A1 = A2 = A3 = A.
The O(ε2) problem then gives rise to the solvability condition:∫

v · R dx+

∫ ∫ (
v2γn1

∂θ1

∂z

)∣∣∣∣
z=0

dx dy = 0, (4.3)

where v = (v1, v2, v3) represents the first-order adjoint variables to (w1, n1, θ1) and R is
the right-hand side of the O(ε2) equations and consists of known first-order functions.

Equation (4.3) is really three solvability conditions, obtained by setting v =

V (z) Ā1e
−iky , v = V (z) Ā2e

1
2

√
3ikx+ 1

2 iky and v = V (z) Ā3e
− 1

2

√
3ikx+ 1

2 iky in (4.3), where
V (z) = (V1, V2, V3) and an overbar represents the complex conjugate. Substituting in
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the known first-order functions and integrating from 0 to 4π/
√

3k with respect to x
and from 0 to 4π/k with respect to y gives:

χ1

dA1

dτ
+ Γ1χ3A1 + χ2Ā2Ā3 = 0 (4.4)

and two more equations obtained by cyclic permutation of the Ai. The χi are integrals
of the known first-order functions which are given in the Appendix.

For steady rolls where A1 = A, A2 = A3 = 0 and dA/dτ = 0, the solvability
conditions imply that Γ1 = 0. This indicates that for rolls we should have defined ε
by Γ − Γc = ε2Γ2 and scaled time as τ = ε2t.

For steady hexagons where A1 = A2 = A3 = A and dA/dτ = 0 the solvability
conditions imply that

Γ1 = −χ2

χ3

A. (4.5)

A stability analysis of (4.4) shows that both branches of this bifurcation are unstable.
However, one of the branches may become stable at higher order. To capture this
behaviour we rescale Γ and τ and include third-order (cubic) terms as well as the
quadratic second-order terms in the amplitude equations. This mixing of second- and
third-order terms is formally valid as long as the coefficient χ2 can be taken to be
O(ε) (Hoyle, McFadden & Davis 1996). Equation (4.5) then implies that Γ − Γc is
O(ε2).

We redefine ε by

Γ = Γc + ε2Γ2

and let

τ = ε2t .

We again obtain the steady-state equations at O(1) and the linear equations at O(ε).
We wish to include both O(ε2) and O(ε3) terms in the amplitude equations, therefore
we take the O(ε2) and O(ε3) terms together and derive the solvability condition

ε3

∫
v ·Q dx + ε2

∫
v · R̃ dx

=−ε3

∫ ∫ (
v2γn1

∂θ2

∂z
+ v2γn2

∂θ1

∂z

)∣∣∣∣
z=0

dx dy − ε2

∫ ∫ (
v2γn1

∂θ1

∂z

)∣∣∣∣
z=0

dx dy, (4.6)

where R̃ and Q contain known first- and second-order functions.
We then substitute the known first- and second-order functions into (4.6) to obtain

three amplitude equations:

ε3χ1

dA1

dτ
+ ε3Γ2χ3A1 + ε3χ6A

2
1Ā1 + ε3χ5A1

(
A2Ā2 + A3Ā3

)
+ ε2χ2Ā2Ā3 = 0 (4.7)

and the two further equations which are formed by cyclic permutations of the Ai. In
this equation χ1, χ2 and χ3 are the same as before and χ5 and χ6 are also given in the
Appendix. If we assume that χ1 6= 0, which is true for all cases studied numerically,
we can write χ̃2 = χ2/χ1, χ̃3 = χ3/χ1 etc. and the amplitude equations become

dA1

dτ
+ Γ2χ̃3A1 + χ̃6A

2
1Ā1 + χ̃5A1

(
A2Ā2 + A3Ā3

)
+
χ̃2

ε
Ā2Ā3 = 0. (4.8)

For regular, time-independent hexagons with A1 = A2 = A3 = A this amplitude
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equation gives

ε2Γ2 = − (2χ̃5 + χ̃6)

χ̃3

ε2A2 − χ̃2

χ̃3

εA ,

which means that

Γ = Γc − ε
(
χ̃2

χ̃3

)
A− ε2

(
2χ̃5 + χ̃6

χ̃3

)
A2. (4.9)

Equation (4.9) indicates that we are justified in mixing the second- and third-order
terms only if the ratio χ2/(2χ5 + χ6) is O(ε). This ratio is certainly small (6 0.1) for
almost all the parameter values we have investigated (see table 1 in § 5), but there is
no proof that it must be small; in this sense an analysis such as this remains to some
extent an ad hoc model, not a fully rational theory. A stability analysis of (4.8) shows
that hexagons are stable only when

χ̃2A < 0, − χ̃2

ε
A− 2χ̃6A

2 − 4χ̃5A
2 < 0, 2

χ̃2

ε
A− 2χ̃6A

2 + 2χ̃5A
2 < 0.

For steady rolls (A1 = A , A2 = A3 = 0) the solvability condition implies

Γ2 = − χ̃6

χ̃3

A2. (4.10)

This is a pitchfork bifurcation which has stable branches if

χ̃6 > 0, A2(χ̃6 − χ̃5) +
χ̃2

ε
A < 0, A2(χ̃6 − χ̃5)−

χ̃2

ε
A < 0.

The roll and hexagon branches are linked by a branch of mixed mode solutions of
the form A1 = A, A2 = A3 = B. These mixed mode solutions are rolls when B = 0
and regular hexagons when B = A. A stability analysis indicates that they are always
unstable.

The shape and stability properties of the bifurcation diagram depend on the values
of χ̃2, χ̃3, χ̃5 and χ̃6. We describe here only the cases relevant to our numerical
results. The bifurcation diagrams are sketched in figure 5: they show the change in
the amplitude of the disturbance, A, as the Rayleigh number Γ is increased. For
simplicity we have drawn the diagrams as though the roll and hexagon branches lie
in the same plane, but in reality they lie in different planes and do not intersect.
Points where the different solution branches do intersect are marked with dots in
the diagrams. The roll, hexagon and mixed mode branches are labelled R, H and M
respectively. The hexagon branches with A positive represent up hexagons and those
with A negative represent down hexagons. There is no difference between rolls with A
positive or negative. In the diagrams we have drawn the roll branches with A positive
except in cases where the diagram is clearer if A is taken as negative for rolls.

If χ̃2 < 0, χ̃3 < 0, χ̃6 > χ̃5 > 0 the bifurcation diagram will resemble figure 5(a). The
stable branch of hexagons has A positive so we expect the first observed pattern to
consist of up hexagons of finite amplitude, in which the flow is up in the centre and
down at the edges. The rolls are supercritical and always unstable.

If χ̃2 < 0, χ̃3 < 0, χ̃5 > χ̃6 > 0 the bifurcation diagram will resemble figure 5(b).
The first transition will again be to up hexagons but as Γ increases these hexagons
lose stability and rolls become stable. Note the fact that there would, in practice, be
hysteresis in the roll/hexagon transition (near the unstable branch M), as well as in
the no-flow/hexagon transition (at the transcritical bifurcation Γc).

If χ̃2 > 0, χ̃3 < 0, χ̃5 > χ̃6 > 0 the bifurcation diagram will resemble figure 5(c),
which is just the inverse of figure 5(b). Here the first transition is to down hexagons
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Figure 5. Bifurcation diagrams according to third-order nonlinear theory for rolls (R), hexagons
(H) and mixed mode solutions (M). ‘Up’ hexagons have A > 0 and ‘down’ hexagons have A < 0.
Stable solutions are represented by solid lines and unstable solutions by dashed lines. (a) χ̃2 < 0,
χ̃3 < 0, χ̃6 > χ̃5 > 0; (b) χ̃2 < 0, χ̃3 < 0, χ̃5 > χ̃6 > 0; (c) χ̃2 > 0, χ̃3 < 0, χ̃5 > χ̃6 > 0; (d) χ̃2 < 0,
χ̃3 < 0, χ̃5 < χ̃6 < 0; (e) χ̃2 < 0, χ̃3 < 0, 2χ̃5 < −χ̃6 < χ̃5 < 0.

which lose stability to rolls at higher values of Γ . In all three of the above cases the
first observed pattern would be hexagons (either up or down).

If χ̃2 < 0, χ̃3 < 0 and χ̃5 < χ̃6 < 0 the bifurcation diagram will resemble figure 5(d)
and if χ̃2 < 0, χ̃3 < 0 and 2χ̃5 < −χ̃6 < χ̃5 < 0 it will resemble figure 5(e). In these
two cases both the hexagon branches and the rolls are unstable and physically we
might expect a transition to another steady-state pattern (requiring an analysis on a
more general lattice) or to an unsteady pattern. We have carried out the analysis on
a square lattice and we find that, as usual, the bifurcation to squares is a pitchfork.
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The stability of the branches of this bifurcation and whether it is sub- or supercritical
depend on the values of four parameters, χ1, χ3 and two more.

Amplitude equations like (4.8) are generic for this type of problem and have
been widely studied. The bifurcation diagrams in figure 5 are similar to those of
Buzano & Golubitsky (1983) and Golubitsky et al. (1984). They indicate that, when
either hexagons or rolls are stable near the onset of bioconvection, hexagons will
be preferred. Whether these hexagons have flow up or down in the centre and
whether or not they are stable depends on the values of the χi which must be found
numerically.

5. Numerical results for kc 6= 0

The form of the bifurcation diagram depends on the values of the χi in equation
(4.8) which we find by solving the O(ε) and O(ε2) equations numerically and then
evaluating the integrals listed in the Appendix. The values of kc, Γc and the χi depend
on β and γ only via the combination βγ. Therefore we only have three parameters
to consider: βγ, δ and Sc. However, we must still ensure that the values of β and
γ chosen are such that the chamber is shallow (equation (3.3)). The O(ε) equations
form an eigenvalue problem with Γc as the eigenvalue. In order to solve the system
an extra, arbitrary boundary condition, which simply scales the solutions, must be
imposed. We impose N(z) = 1 at z = 0. The system is solved using a routine kindly
provided by Dr D. R. Moore (Cash & Moore 1980). The adjoint problem for V ,
which is also an eigenvalue problem, is solved using the same routine by imposing
the extra boundary condition V2 = 1 at z = 0. The eigenvalue Γc is the same in
both cases. Having found the first-order functions we can calculate χ1, χ2 and χ3 by
numerical integration.

The second-order functions are found by numerical solution of four sets of cou-
pled ordinary differential equations using a finite difference technique and Newton
iterations. The solvability condition appears in one of these four sets which requires
the computed value of χ2/χ3. Having found the first- and second-order functions, we
can find χ5 and χ6 by numerical integration. The values of kc, Γc, χ1, χ2, χ3, χ5 and χ6

for various values of βγ, δ and Sc are given in table 1.
When βγ � 1 a significant cell boundary layer forms at the free surface (see

figure 2) which results in a very steep gradient in n0 close to the free surface. This
makes the numerical solution slightly more difficult and we need to use a grid with
points clustered near the free surface.

The first-order equations do not contain Sc, hence the values of kc, Γc and χ3

depend only on δ and βγ and are independent of Sc. The values of the other χi are
more or less independent of Sc when Sc > O(1), for given βγ and δ (see Sc = 2 and
Sc = 7700 in table 1), but they are significantly affected for Sc � 1 (Sc = 0.01 in
table 1). In all cases studied, down hexagons are predicted for Sc = 0.01, even where
that is not the case at higher Sc. However 0.01 is an unrealistically small value for
the Schmidt number (see below) and we now concentrate our attention on the effect
of βγ and δ at more realistic values of Sc (2 and 7700).

For δ = 1 we computed values of the χi for βγ =0.05, 1 and 50. For βγ = 0.05,
χ̃2 > 0, χ̃3 < 0 and χ̃5 > χ̃6 > 0, indicating that the first stable transition from the
steady state is to down hexagons (see figure 5c). For βγ = 1, χ̃2 becomes negative,
χ̃6 − χ̃5 becomes positive and the first stable transition is to up hexagons (figure 5a).
At large βγ (= 50), χ̃6 − χ̃5 becomes negative again but the first stable transition is
still to up hexagons (figure 5b).
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For δ = 3 and βγ = 1, χ̃2 < 0, χ̃3 < 0 and 2χ̃5 < −χ̃6 < χ̃5 < 0. In this case
both hexagon branches are subcritical and unstable and the rolls are supercritical and
unstable (see figure 5e). When the value of δ is increased to 7, 10 or 16, χ̃2 < 0, χ̃3 < 0
and χ̃5 < χ̃6 < 0. In this case both the roll and hexagon branches are subcritical and
unstable (figure 5d).

Note that | χ̃2 | is small (though not always very small) compared to 2χ̃5 + χ̃6

for all parameter values listed except βγ = 50, δ = 1 and Sc = 7700. Therefore
the mixing of second- and third-order terms in the analysis in the previous section
was reasonably justified except in this one case. Since χ2 is small when the problem
is almost symmetric (Golubitsky et al. 1984), it is not surprising that it becomes
large for large βγ when the basic density distribution is very asymmetric with a high
concentration of cells near the upper surface.

Experimental observations (figure 1) indicate that the first bifurcation from the
steady state is to down hexagons. This bifurcation occurs when the suspension is
approximately 0.5 mm deep. Hillesdon et al. (1995) gave estimates of the values of
the parameters applicable to the experiment of Kessler et al. (1994) as

β = 7h2, γ = 15h, δ = 7, Sc = 7700, (5.1)

where h is the depth of the chamber in mm. Hillesdon & Pedley (1996) suggested
δ = 16 as a realistic value instead, the difference being due to taking DC = 2.12× 103

rather than DC = 103.

The results in table 1 indicate that for realistically large values of Sc and δ = 3, 7
and 16 both up and down hexagons and rolls are unstable, whereas for δ = 1
the model predicts that the first transition from the steady state will be to stable
hexagons. This suggests that previous estimates of δ were too large. A smaller value
of δ corresponds to a larger value of DN0 which corresponds to a greater contribution
from random aspects of cell swimming.

Using an analogy with kinetic theory, Hillesdon et al. (1995) estimated DN0 as 1
3
V 2
s τ

where Vs is the average cell swimming velocity and τ is the cell velocity correlation
time. They used Vs = 20 µm s−1 and τ = 1 s, values which are similar to those quoted
for Escherichia coli, another flagellated bacterium (Berg 1983); larger values of Vs or
τ for B. subtilis would give the required larger value for DN0. The preliminary data
on B. subtilis trajectories measured by Kessler et al. (1995) do indeed indicate longer
sequences of straight trajectory than for E. coli and therefore a smaller value of δ is
appropriate. More detailed measurements should however be made on the trajectories
of B. subtilis and analysis performed similar to that of Hill & Häder (1997) for the
alga C. nivalis.

The numerical results in table 1 also indicate that the model only predicts the
formation of stable down hexagons (as seen experimentally) for realistic Sc if the
value of βγ is small (e.g. 0.05). For larger values of βγ up hexagons are predicted.
Biologically, a small value of βγ corresponds to a small value of K0 (low oxygen
consumption by the bacteria), a small value of N0 (low initial concentration of
bacteria), a large value of C0 − Cmin or a large value of DN0 (large contribution
from random cell swimming). This last is most likely to be relevant, as discussed
above.

For the parameter values which predict down hexagons (βγ = 0.05, δ = 1) the model
predicts a critical wavenumber of 1.371 (table 1) which corresponds to hexagons of
wavelength approximately 2.9 mm. This compares reasonably well with the observed
wavelength of the hexagons (figure 1) which is approximately 1.7 mm.
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6. Weakly nonlinear analysis: kc = 0

A slightly different analysis is needed for regions of parameter space in which the
critical wavenumber kc is zero. For simplicity we consider here the two-dimensional
case only; in the three-dimensional case equation (6.7) is replaced by a partial
differential equation in two spatial variables, the solution of which is beyond the
scope of this paper. The method is similar to that used by Chapman & Proctor (1980)
and Depassier & Spiegel (1981). We aim to derive an equation for the horizontal
planform function f and then seek solutions which are periodic in a box of length L.

For disturbances close to critical the horizontal variation will be much more gradual
than the vertical variation so that we can rescale the horizontal variable x as X = εx,
z remaining the same. In the two-dimensional case we can describe the fluid velocity
using a streamfunction: u = −∇ × ψŷ. The pressure p can be eliminated from the
governing equations by taking the curl of equation (2.7):

∇×
[
Sc−1

(
∂u

∂t
+ (u · ∇)u

)]
= ∇4ψ − Γ ∂n

∂x
. (6.1)

We define ε by

Γ = Γc + ε2Γ1 ,

expand the variables as

n = n0 + ε2n1 + ε4n2 + ε6n3 + . . . ,

θ = θ0 + ε2θ1 + ε4θ2 + ε6θ3 + . . . ,

ψ = ε3ψ1 + ε5ψ2 + . . . ,

and consider a slow timescale τ = ε4t. The expanded variables are substituted into
equations (2.5), (2.6) and (6.1) and powers of ε equated.
O(1) in equations (2.5) and (2.6) gives the analytic solution for the steady state

n0(z) and θ0(z) as before. O(ε2) in equations (2.5) and (2.6) and O(ε3) in equation
(6.1) give homogeneous equations for n1, θ1 and ψ1 which can be solved, subject to
the boundary conditions, without the need for a solvability condition. The solution
takes the form

n1 = N(z) f(X, τ), θ1 = C(z) f(X, τ), ψ1 = Γc Ψ (z)
∂

∂X
f(X, τ), (6.2a–c)

where the functions N, C and Ψ have to be calculated numerically, except in the
limit βγ � 1, because the coefficients of the equations involve n0(z) and θ0(z) from
equations (3.1) and (3.2).

In order to satisfy the condition on conservation of cells (equation (2.9)) we require
that ∫ ∫

n1 dz dX = 0 . (6.3)

This means that either
∫ 1

0
N dz = 0 or

∫
f(X, τ) dX = 0 over some suitable range of

X. Since it is not possible to enforce
∫ 1

0
N dz = 0, we will enforce the condition on

f. We will be looking for solutions which are periodic in a box of length L so we

impose
∫ L

0
f(X, τ) dX = 0. There is an arbitrariness in the choice of the scaling of f

in (6.2); we choose the scaling such that
∫ L

0
f2 dX = 1.

O(ε4) in equation (2.5) and (2.6) and O(ε5) in equation (6.1) give three inhomoge-
neous equations for n2, θ2 and ψ2. The boundary conditions on these equations can
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be satisfied only if the solvability condition∫ 1

0

(
∂2n1

∂X2
+

dn0

dz

∂ψ1

∂X
− γn0

∂2θ1

∂X2

)
dz = 0 (6.4)

holds. Substituting n1, θ1 and ψ1 into (6.4) implies that

Γc =
ζ1

ζ2

(6.5)

where ζ1 and ζ2 are given in the Appendix.
To solve the equations for n2, θ2 and ψ2 we pose a solution

n2 = J1(z)fXX + J2(z)f
2,

θ2 = G1(z)fXX + G2(z)f
2,

ψ2 = ΓcD(z)fXXX + ΓcE(z)ffX + Γ1F(z)fX,

which results in ordinary differential equations for J1, J2, G1, G2, D, E and F which
can be solved numerically, or analytically if βγ � 1. F satisfies the same differential
equation and boundary conditions as Ψ ; hence F ≡ Ψ .

Note that in order to satisfy the integral condition
∫∫
n2 dz = 0, we require either∫ 1

0
J1dz = 0 or

∫ L
0
fXX dX = 0 and

∫ 1

0
J2 dz = 0. Later we impose the periodic

boundary conditions fX = 0 at X = 0, L, hence we only require
∫ 1

0
J2 dz = 0.

The solvability condition at the next order in ε gives the equation

ζ3fτ + ζ4fXXXX + ζ5

(
f2
X + ffXX

)
− Γ1ζ2fXX = 0, (6.6)

where the ζi are given in the Appendix. The same equation, although with opposite
signs for the coefficients ζ2 and ζ5, was found by Depassier & Spiegel (1981) for
compressible convection in a layer of perfect gas with fixed heat flux on the boundaries.

Since we are looking for solutions to (6.6) which are periodic in a box of length
L we impose the boundary conditions fX = fXXX = 0 at X = 0, L; these conditions
mean zero streamfunction, shear stress, cell gradient and oxygen gradient across the
ends of the box. We can then rescale the variables to eliminate L . We let

η =
X

L
, T =

ζ4

L4ζ3

τ, F =
ζ5L

2

ζ4

f ,

so that equation (6.6) becomes

FT +Fηηηη +F2
η +FFηη − Γ1L

2 ζ2

ζ4

Fηη = 0, (6.7)

subject to boundary conditions:
at η = 0

Fηηη =Fη = 0 ;

at η = 1

Fηηη =Fη = 0.

We also have the integral condition∫ 1

0

F dη = 0 (6.8)
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Figure 6. The solution F in the case kc = 0. (a) P = 1; (b) P = 100; (c) P = 1000.

and the scaling condition ∫ 1

0

F2 dη =
ζ2

5

ζ2
4

L3 .

We now consider stationary solutions with FT = 0 and integrate (6.7) twice with
respect to η to obtain

Fηη + 1
2
F2 − Γ1L

2 ζ2

ζ4

F = P , (6.9)

where

P =
ζ2

5

2ζ2
4

L3 =
1

2

∫ 1

0

F2 dη .

Equation (6.9), the boundary conditions on Fη and (6.8) constitute an eigenvalue
problem with Γ1L

2ζ2/ζ4 as the eigenvalue. We can solve equation (6.9) numerically
for a given value of P ; solutions F of this equation for different values of P are
shown in figure 6. The value of the eigenvalue Γ1L

2ζ2/ζ4 changes with the value of
P (see figure 7). For small values of P (i.e. small values of L) Γ1L

2ζ2/ζ4 is positive.
As P increases (i.e. L increases), Γ1L

2ζ2/ζ4 decreases and for P > Pcrit it becomes

negative, i.e. Γ1ζ2/ζ4 is negative for L >
(
2Pcritζ

2
4/ζ

2
5

)1/3
.

The behaviour of the system depends on the values of the ζi in equations (6.5) and
(6.6). In order to calculate these quantities we need to solve the first- and second-order
equations and integrate to find the ζi. In general this must be done numerically but
for βγ � 1 an analytic solution exists. In § 6.1 we present this analytic solution and in
§ 6.2 we present the numerical solution for a range of parameter values and compare
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it to the analytic solution. As in the kc 6= 0 case, β and γ affect the result only via the
combination βγ; the individual values of β and γ are not important provided that
they are such that the chamber is shallow.

6.1. Calculation of the ζi: analytic solution for βγ � 1

In the limit βγ � 1, Hillesdon & Pedley (1996) give the steady-state solutions as

n0 = 1 + 1
2

(
z2 − 2z + 2

3

)
βγ + 1

6

(
z4 − 4z3 + 5z2 − 2z + 7

24

)
β2γ2 + O

(
β3γ3

)
,

dθ0

dz
= β(z − 1)− 1

6
β2γ (1− z)

(
z2 − 2z

)
+ O

(
β3γ2

)
.

Hillesdon & Pedley also carried out the linear stability analysis in the βγ � 1 limit
and found that an analytic solution was possible for small wavenumbers (k2 = O(βγ))
giving Γc = 576/βγ + O(1). This suggests that an analytic solution for the weakly
nonlinear problem in the kc = 0 case is possible in the limit βγ � 1.

The first-order equations have a solution of the form

N =

∞∑
i=0

Ni(z) (βγ)i, C =

∞∑
i=0

Ci(z) β(βγ)i, Ψ =

∞∑
i=0

Ψi(z) (βγ)i,

where Ni, Ci, and Ψi are polynomials in z. Having found these functions we can use
(A 6), (A 7) and (A 8) to find ζ1, ζ2 and ζ3:

ζ1 = 1− βγ

3
+

4

45
β2γ2 + O(β3γ3),

ζ2 =
βγ

576
− 361

302400
β2γ2 + O(β3γ3),

ζ3 = 1− βγ +
17

45
β2γ2 + O(β3γ3).

We can then use (6.5) to find

Γc =
576

βγ
+

35712

175
+ O(βγ) . (6.10)

The second-order functions can be found as expansions in powers of βγ in the
same way as the first-order functions and used to find ζ4 and ζ5 from equations (A 9)
and (A 10):

ζ4 =
11881

150150
− 6229

21450δ
+ O(βγ), (6.11)

ζ5 = 2 + O(βγ); (6.12)
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ζ4 is positive for δ & 3.67 and this is always true when kc = 0 (see figure 4). Hence
ζ1 . . . ζ5 are always positive for small βγ .

6.2. Calculation of the ζi: numerical solution

The first-order equations are solved using a finite difference technique and Newton
iterations. It is necessary to impose an extra boundary condition, which simply scales
the solutions. We impose N = 1 at z = 0. ζ1, ζ2 and ζ3 are then found by numerical
integration and the value of Γc is calculated from (6.5). The second-order equations
are solved using the same routine as in § 5 and ζ4 and ζ5 are calculated by numerical
integration. The numerically calculated values of the ζi and Γc for various values of
βγ and δ are shown in table 2, where we have included the relevant values of the ζi
and Γc according to the analytic solution for comparison.

Only a small region of parameter space is both realistic and relevant for the kc = 0
case, because in general δ must be unrealistically large (see figure 4); the constants
ζ1 . . . ζ5 are all positive for all the parameter values which we have considered.

6.3. Discussion of results

The variation of Γ1 with L shown in figure 7 may be thought of in two ways. We
can consider the problem as defined over an infinite horizontal domain on which the
system is left to find its own lengthscale. In this case the value of the lengthscale L will
depend on the value of the Rayleigh number Γ . For ζ2/ζ4 > 0, as Γ increases the first
instabilty will be subcritical (Γ1 < 0) and the wavelength L of the patterns formed
will be very large. If ζ2/ζ4 < 0, then as Γ increases the first instabilty will again
be subcritical and will occur at Γ1L

2ζ2/ζ4 ≈ 9.9. In this case we would expect the
wavelength L of the patterns formed to be very small. If L is very small the original
assumption that the wavelength of the patterns is large compared to the depth of the
layer will no longer hold; however, since we have found that the coefficients ζi are
always positive we need consider the ζ2/ζ4 < 0 case no further.

Alternatively we can consider the problem as being confined to a box of horizontal
extent H . In this case the first instabilities must have L < H. For ζ2/ζ4 > 0 this
constraint imposes a minimum value on Γ1 which may be positive or negative
depending on whether (ζ2

5/2ζ
2
4 )H3 is less than or greater than Pcrit. If (ζ2

5/2ζ
2
4 )H3 < Pcrit

the minimum value of Γ1 is positive. Hence as Γ increases the first bifurcation
will be supercritical and the resulting weak patterns will have wavelength H . If
(ζ2

5/2ζ
2
4 )H3 > Pcrit the minimum value of Γ1 is negative. In this case, as Γ increases

the first bifurcation will be subcritical and will be to finite-amplitude patterns of
wavelength H .

7. Conclusion
In this paper we have carried out a weakly nonlinear analysis to predict the

patterns formed at the onset of bioconvection in a suspension of the oxytac-
tic bacterium Bacillus subtilis. We use the model described in Hillesdon & Pedley
(1996).

The linear stability of the steady state depends on whether the Rayleigh number
Γ is greater or less than the neutral value Γn(k) where k is the wavenumber of
the disturbance. The most unstable wavenumber, kc, can be either zero or non-zero,
depending on the values of the parameters βγ and δ. We have carried out a weakly
nonlinear analysis to investigate the patterns formed at the onset of convection in
both of these cases.
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For the kc 6= 0 case we considered patterns on a hexagonal lattice and predicted
that the first transition from the steady state will be to hexagons, as long as the
diffusivity ratio δ is not too large. Whether these hexagons are stable and whether
they are up or down hexagons depends on the values of the parameters βγ and δ.
We obtained numerical results for the hexagonal lattice which enabled us to draw
bifurcation diagrams for different regions of parameter space. For values of δ larger
than about 3 both hexagons and rolls are subcritical and unstable. For values of δ
smaller than this hexagons are stable (to disturbances that are consistent with the
hexagonal lattice at least). For small βγ the first bifurcation is to down hexagons and
for larger βγ the first bifurcation is to up hexagons.

Experiments in a slightly tilted chamber show that the first bifurcation from the
steady state is to down hexagons. The model predicts this bifurcation to down
hexagons, but only for values of βγ and δ which are smaller than previous estimates
of these parameters. A smaller value of δ would result from a larger value of the cell
diffusivity DN0. A larger value of DN0 would also result in the required smaller value
of βγ, but a smaller value of βγ could also come from a smaller value of the oxygen
consumption K0 or of the chemotaxis coefficient a. More detailed measurements of
these quantities would clearly be desirable.

For the case where the critical wavenumber kc is zero we carried out a two-
dimensional analysis. We derived an equation (6.6) describing the evolution of the
horizontal planform f and looked for steady solutions to this which are periodic
in a box of length L. The wavelength, L, of the patterns formed and whether they
are sub- or supercritical depends on Γ1, the deviation of Γ from its critical value
Γc.

We carried out both a numerical solution and an analytic solution for the region
βγ � 1. We found that for Γ1 < 0, i.e. Γ subcritical, the wavelength of the patterns
is large and as Γ1 increases the wavelength of the patterns decreases. However, we
have not investigated the stability of these solutions or the possibility that subcritical
solutions may turn over at higher order (as in the kc 6= 0 case).

Throughout this paper we have considered only the shallow chamber case in which
all the bacteria have sufficient oxygen to be active. The results may be different
in the deep chamber. As suggested previously, the model we have used may be
inadequate in other ways. The orientation of cells by fluid shear (gyrotaxis) has
proved to be important in algal bioconvection and the cell conservation equation
should presumably contain a term to describe it. It may also be useful to consider
a more detailed model for chemotaxis, which takes account of the details of the
chemotaxis mechanism (cf. Armitage, Havelka & Sockett 1990). A self-consistent
model has been developed for gyrotactic algae which includes both deterministic
and random aspects of cell swimming in a probability density function for the cell
swimming direction (Pedley & Kessler 1990); more detailed experimental information
about the behaviour of individual cells (cf. Kessler et al. 1995) may help us to develop
such a model for chemotactic bacteria.

The authors would like to thank the Engineering and Physical Sciences Research
Council for their financial support, A.M.M. for a Research Studentship and T.J.P. for a
Senior Fellowship. We would also like to thank Professor J. O. Kessler for originating
this research and for the use of his photograph of the experiments; Dr N. A. Hill,
Dr R. B. Hoyle, Dr P. C. Matthews, Dr M. R. E. Proctor and Dr A. Skeldon for
many helpful discussions; and Dr D. R. Moore for use of the ordinary differential
equation solver NRK.



268 A. M. Metcalfe and T. J. Pedley

Appendix
This Appendix contains the expressions for the χi and the ζi which appear in the

solvability conditions and evolution equations. The functions Ji, Gi and Ei in χ5 and
χ6 are the solutions to the second-order differential equations.

χ1 =

∫ 1

0

Sc−1V1(W
′′ − k2W ) + V2N +

1

δ
V3C dz, (A 1)

χ2 =

∫ 1

0

[
V1Sc

−1(W ′W ′′ + 1
2
WW ′′′ − 3

2
k2WW ′)

+V2(WN ′ + 1
2
W ′N − 1

2
γk2CN + γN ′C ′ + γNC ′′)

+
V3

δ
(WC ′ + 1

2
W ′C)

]
dz +

(
V2γNC

′)∣∣
z=0

, (A 2)

χ3 =

∫ 1

0

V1k
2N dz, (A 3)

χ5 =

∫ 1

0

[
V1Sc

−1k2
(
− 3

4
k2WE ′6 − 9

4
k2WE ′7 − 3

4
k2W ′E6 − 15

4
k2W ′E7

+ 1
2
W ′E ′′6 + 3

2
W ′E ′′7 + 1

2
W ′′E ′6 + 1

4
WE ′′′6 + 3

4
WE ′′′7 + 1

4
W ′′′E6 − 3

4
W ′′′E7

)
+V2

(
1
2
γC ′J ′6 + 1

2
γC ′′J6 − 1

4
γk2CJ6 + 1

2
γC ′J ′7 + 1

2
γC ′′J7 + 1

4
γk2CJ7

+γC ′J ′4 + γC ′′J4 − γk2CJ4 − 1
4
γk2NG6 − 3

4
γk2NG7

+ 1
4
k2NE ′6 + 3

4
k2NE ′7 + 1

2
k2N ′E6 + 3

2
k2N ′E7 +WJ ′4 + 1

2
WJ ′6 + 1

2
WJ ′7

+ 1
4
W ′J6 + 3

4
W ′J7 + γN ′G′4 + 1

2
γN ′G′6 + 1

2
γN ′G′7 + γNG′′4 + 1

2
γNG′′6 + 1

2
γNG′′7

)
+

1

δ
V3

(
1
2
k2C ′E6 + 3

2
k2C ′E7 + 1

4
k2CE ′6 + 3

4
k2CE ′7

+ WG′4 + 1
2
WG′6 + 1

2
WG′7 + 1

4
W ′G6 + 3

4
W ′G7

) ]
dz

+
[
V2γ

(
C ′J4 + 1

2
C ′J6 + 1

2
C ′J7 +NG′4 + 1

2
NG′6 + 1

2
NG′7

)]∣∣
z=0

, (A 4)

χ6 =

∫ 1

0

[
V1Sc

−1k2
(
−3k2WE ′8 − 6k2W ′E8 + 2W ′E ′′8 −W ′′E ′8 +WE ′′′8 − 2W ′′′E8

)
+V2

(
γJ ′4C

′ + γJ4C
′′ − γk2CJ4 + 1

2
γJ ′8C

′ + 1
2
γJ8C

′′ + 1
2
γk2CJ8

+γN ′G′4 + γNG′′4 + 1
2
γN ′G′8 + 1

2
γNG′′8 − γk2NG8

+ WJ ′4 + 1
2
WJ ′8 +W ′J8 + k2NE ′8 + 2k2N ′E8

)
+

1

δ
V3

(
2k2C ′E8 + k2CE ′8 +WG′4 + 1

2
WG′8 +W ′G8

) ]
dz

+
[
γV2

(
C ′J4 + 1

2
C ′J8 +NG′4 + 1

2
NG′8

)]∣∣
z=0

; (A 5)

ζ1 =

∫ 1

0

(N − γn0C) dz, (A 6)

ζ2 =

∫ 1

0

−dn0

dz
Ψ dz, (A 7)
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ζ3 =

∫ 1

0

N dz, (A 8)

ζ4 =

∫ 1

0

(
−J1 − ΓcD

dn0

dz
+ γn0G1

)
dz, (A 9)

ζ5 =

∫ 1

0

(
−2J2 − ΓcE

dn0

dz
+ 2γn0G2 + γNC + ΓcNΨ

′
)

dz. (A 10)
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